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ABSTRACT: Here, we report on a novel class of fluorofoldamer-based
artificial water channels (AWCs) that combines excellent water transport
rate and selectivity with structural simplicity and robustness. Produced by a
facile one-pot copolymerization reaction under mild conditions, the best-
performing channel (AWC 1) is an n-C8H17-decorated foldamer nanotube
with an average channel length of 2.8 nm and a pore diameter of 5.2 Å.
AWC 1 demonstrates an ultrafast water conduction rate of 1.4 × 1010 H2O/
s per channel, outperforming the archetypal biological water channel,
aquaporin 1, while excluding salts (i.e., NaCl and KCl) and protons. Unique
to this class of channels, the inwardly facing C(sp2)-F atoms being the most
electronegative in the periodic table are proposed as being critical to
enabling the ultrafast and superselective water transport properties by
decreasing the channel’s cavity and enhancing the channel wall smoothness
via reducing intermolecular forces with water molecules or hydrated ions.
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Scarcity of clean water is one critical challenge currently
affecting over 4 billion people worldwide.1,2 An important

state-of-the-art technology for clean water production and
wastewater reuse is reverse-osmosis (RO) membrane desali-
nation.3 The key to RO desalination is precise control over
transient or fixed subnanometer scale passages, allowing water
molecules to pass through the membrane while excluding other
solutes like salt ions.4

In nature, living organisms regulate transmembrane water
flow by membrane-embedded water channels, namely
aquaporins (AQPs). AQPs facilitate superfast water trans-
location and completely reject salts and even protons.5,6 For
instance, AqpZ, isolated from E. coli, features a water transport
rate of ∼6 × 109 H2O/s.

7,8 The other type of AQPs, AQP1,
present in specific human cells, can transport ∼1.1 × 1010

H2O/s,
9 yet with remarkably high water to monovalent ion

selectivity over 109. Integration of such water-permeating and
salt-rejecting AQPs into polymer-based membranes represents
an emerging approach for developing the next generation of
water desalination and purification technology.10−12 Never-
theless, AQPs usually suffer from high production costs,
challenges with scalability, and questions about structural
stability in abiotic environments,13 making them less ideal for
large-scale industrial applications.
Motivated by the superior performance of natural AQPs,

researchers have expanded extensive effort in developing
artificial water channels (AWCs) with simpler structures yet

comparable or even exceeding water transport capabil-
ities.14−16 In 2007, Percec and co-workers reported the
pioneering work in this field, wherein dendritic dipeptides
were employed for the construction of AWCs in a lipid
membrane.17,18 Thereafter, various types of unimolecular or
self-assembled AWCs have been designed and characterized
including imidazole-quartet,19−24 pillar[n]arenes,25−28 aro-
matic macrocycles,29 carbon nanotube porins (CNTPs),30,31

porous organic cages,32 helically folded polymeric nano-
tubes,33−35 and hydrophilic hydroxyl assemblies.36 The
collective conclusion states that water transport efficiency
and selectivity highly depend on the geometry and surface
chemistry of the channel interior lumen, in which channel−
water and water−water interactions occur, primarily via H-
bonds.9,34,35 However, concurrently achieving high single-
channel water permeability and high transport selectivity (e.g.,
rejection of salts and protons) in a single AWC still remains a
daunting task to date that has been addressed in only a few
studies.27,35
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Here we report on such a high-performance salt- and
proton-rejecting AWC system that has a 5.2 Å-diameter cavity
and transports water at a rate better than AQP1, outperforming
by greater than a factor of 4 all other hitherto known salt-
rejecting AWCs, except for one very recent example.35

Molecular Design Incorporating Electron-Withdraw-
ing F Atoms. Although the lone pair donation from the most
electronegative fluorine is significantly suppressed, making it a
poor H-bond acceptor,37 early studies have established the
ability of C(sp2)-F to form weak intramolecular H-bonds in
foldamer structures.38,39 Further, electron-withdrawing fluorine
atoms may differ considerably from other H-bond-forming
groups in determining the channel construct and guest (water,
ion, etc.) binding behaviors40 by decreasing the interior pore
size and enhancing channel wall smoothness via reducing
intermolecular host−guest H-bond interactions with water
molecules or coordination bonds with cations, etc. With these
points in mind, we decided to explore fluorofoldamer-based
polymeric hollow channels of AB type (Figure 1a), having
inward-facing fluorine atoms decorating the channel lumen, as
possible AWCs.
AWC 1 Exhibits the Best Water Transport Perform-

ance. Screening a matrix of combinatorically produced AWCs
culminated in the best performing AWC, water channel 1
(Figure 1a and Table S1). 1 is found to conduct water at an
ultrafast rate of 1.4 × 1010 H2O/s across the membrane, a value

that is about two-times higher than its methoxy-containing
analogous channel 1-OMe (see later discussions). Further, 1
also demonstrates near-perfect salt (NaCl and KCl) and
proton rejection, making it an excellent replacement of natural
AQPs for possible industrial uses in fabricating a next-
generation AWC-based RO membrane for seawater desalina-
tion or for use in therapeutics.27

AWC 1 was synthesized by following a reported protocol.41

Briefly, a one-pot copolymerization reaction between diamine
A1 and fluoro-containing diacid B using HBTU as the coupling
reagent readily produced an off-white powdery product 1 with
∼80% isolated yield (Figure 1a). Apart from extensive π−π
stacking, intramolecular H-bonds (R−O···H−N, C=O···H−N,
and C(sp2)-F···H−N) are also expected to stabilize the
polymeric product in a helically folded configuration.42

Quantum mechanics computation of the pore scaffold (e.g.,
an octameric molecule (A1B)8, Figure 1B) was performed at
the HF/6-31G(d) level that has consistently yielded accurate
structural predictions for intramolecularly H-bonded fol-
damers.43−45 Such computation shows that the optimized
structure exhibits expected helical tubular structure, having
three AB repeating units per helical turn (3.4 Å in helical
pitch) and, after subtracting the van der Waals radii of the
interior atoms, a pore diameter of ∼5.2 Å, which is larger than
a water molecule (2.8 Å) but smaller than first-shell hydrated
Na+ ions.

Figure 1. Molecular structures and water transport properties of fluorofoldamer-based AWCs at room temperature. (a) One-pot copolymerization
mediated by amide coupling reagents. (b) Quantum mechanics-computed helically folded tubular structure for an octameric (A1B)8 oligomer at the
HF/6-31G(d) level that gives rise to three AB units per helical turn; side chains are omitted for clarity. (c) Schematic illustration of LUV-based
water permeability experiment in the presence of 200 mM sucrose as hypertonic solution. (d) Representative stopped-flow light scattering traces of
blank DOPC LUV of ∼120 nm in diameter and channel 1 reconstituted LUVs under the inwardly directed osmotic gradient. (e) Single channel
water permeability and insertion efficiency for 1 at different lipid/channel molar ratios. (f) Arrhenius plots of the water permeability as a function of
temperature for DOPC only and 1 for determining activation energies (Ea) averaged over three independent runs.
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The average molecular weight of 1 was measured to be 13.9
kDa using gel permeation chromatography (GPC), which is
consistent with a molecular weight of 15.4 kDa determined
using the NMR-based method (Scheme S3, Figure S1, and
Table S2). Using the simulated pore structure as the guide
(three AB units per helical turn, MW of AB unit = 616.7 Da;
see Figure 1b and Table S1), 1 contains 25 AB units on
average, measuring at 2.8 nm in average nanotubular length,
dimensionally comparable to the thickness of typical lipid
bilayer membranes (e.g., 2.7 nm for DOPC).46 In addition, 1
also displays a characteristic mass pattern with a repeating unit
of 617 Da in the MALDI-TOF spectrum (Figure S2).
The stopped flow light-scattering method was employed to

quantify the water transport efficiency, using large unilamellar
vesicle (LUVs, 120 nm diameter, Figure 1c) with channel 1
preinserted in the LUV wall.25,26 Under the shrinkage mode,
LUVs were exposed to hypertonic buffer solution containing
200 mM sucrose. The time-dependent light-scattering
intensities were captured and analyzed (Figure 1d), from
which the water transport rate was determined. As shown in
Figure 1e, water permeability of 1 was largely independent of
the lipid to channel molar ratio (mLCR), and the profile
peaked at 12 000:1 (∼12 channel molecules per LUV), giving
water permeability PW of (41.2 ± 2.1) × 10−14 cm3/s. With a
channel insertion efficiency of 87.9% at this mLCR (Table S3),
water permeability translates into a single-channel water
transport rate of (1.4 ± 0.07) × 1010 H2O/s, which becomes
0.78 × 1010 H2O/s using the new equation for Pf correction.

47

The temperature-dependent water permeability of 1 were
measured from 6 to 25 °C, from which its activation energy Ea
is calculated as 7.1 ± 1.2 kcal mol−1 using the Arrhenius
equation (Figure 1f). It is higher than that of the AQPs (∼5
kcal mol−1) but much lower than that from the blank DOPC
LUV (12.3 ± 0.2 kcal mol−1). In view of the superior water
conduction rate of 1 compared to AQPs, we assume that low
activation energy might not be a necessary feature for highly
permeable AWCs, likely because the transport mechanisms
differ from that of AQPs in nature, as proposed before.34,35

Impact of Channel Length on Water Permeability.
Following identical synthetic protocols,41 other amide coupling
reagents (HATU, BOP, and TBTU) produce the same A1B
type channels with NMR-derived molecular weights of 20.1,
19.9, and 13.1 kDa (Table S1) that correspond to channel
lengths of 4.0, 4.0, and 2.6 nm, respectively. As summarized in
Figure S3, their water transport rates were all found to be lower
than AWC 1 (MW = 13.9 kDa, 2.8 nm). More specifically, at
the mLCR of 12 000:1 and compared to 1 of 2.8 nm (Pw =
41.2 × 10−14 cm3/s), A1B type channels produced using
HATU (4.0 nm), BOP (4.0 nm), and TBTU (2.6 nm) show
much lower PW values of 21.9 × 10−14, 22.0 × 10−14, and 32.4
× 10−14 cm3/s, respectively.

Impact of Side Chain Type on Water Permeability. To
examine the impact of channel side chains on water transport
property, diamines A2 and A3 were also employed in the
HBTU-facilitated copolymerization reaction. Their corre-
sponding products (A2B)n and (A3B)n were named AWCs 2
and 3, respectively. Monomers A1 and A2 were further

Figure 2. Ion exclusion properties of channel 1 at room temperature. (a) Reflection coefficients calculated from water permeabilities under three
types of hypertonic conditions, suggesting high and low salt rejections by 1 and gA, respectively. (b) pH-sensitive HPTS-based LUV assays under
high ionic concentration gradients, confirming that 1 does not transport both Na+ and K+ cations. (c) HPTS-based LUV assays under a proton
gradient, pointing to an incapability of 1 in transporting protons. (d) Chloride-sensitive SPQ assay, demonstrating that 1 does not transport anions.
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premixed in 1:1 ratio and then stoichiometrically reacted with
B to produce mixed copolymers (A1BA2B)n (e.g., AWC 4).
From their NMR-derived molecular weights (Table S2), the
channel tubular lengths can be estimated to be 3.1, 2.9, and 4.1
nm for 2, 3, and 4, respectively. At the mLCR of 12 000:1, 2−4
show much lower PW values of 2.8 × 10−14, 20.2 × 10−14, and
29.4 × 10−14 cm3/s, respectively. The comparative data
indicate the importance of side chain lipophilicity on water
transport efficiency, and clearly the linear n-C8H17 represents
the best performer.
High Salt and Proton Rejection Capacity of AWC 1.

One major challenge for AWCs in mimicking AQP perform-
ance is to achieve complete rejection of salts and protons. To

this end, we first compared the osmotic water permeability (Pf
in cm/s) values of 1 under three hypertonic conditions (300
mM sucrose, 150 mM NaCl, or 150 mM KCl, Figure 2a).
Since large sucrose molecules are not able to permeate through
AWC 1, the reflection coefficient, defined as Pf(MCl)/
Pf(sucrose) where M

+ = Na+ or K+, was used to approximately
gauge the transport of salt ions. The well-established dimeric
water- and cation-transporting channel gramicidin A (gA) was
employed as the positive control, which showed expected
reflection coefficients of 0.53 ± 0.02 and 0.07 ± 0.001 for
NaCl and KCl, arising from its high permeability to both Na+

and K+ ions. In contrast, the reflection coefficients of 1 were
calculated to be 1.02 ± 0.01 for Na+ and 1.05 ± 0.01 for K+ at

Figure 3. Ion exclusion and water transport properties of 1, validated using MD simulations, point to its promise as a component of AWC-based
desalination membranes. (a) Water-to-salt permselectivity values of 1, some representative water channels, and current polymeric desalination
membranes. CNTPs have pore diameter of ∼0.47 nm.55 The α values refer to the fractional membrane volume occupied by water channels (e.g., α
= 0.5 represents the half membrane volume that comprises 1. Dashed line corresponds to upper bound limit in permeability−selectivity value for
the current polymer desalination membranes.11,50 (b) Single-channel water conduction rate and channel pore diameter of natural AQPs (AqpZ7,8

and AQP19,56) and AWC systems including nCNTP,31 CC3,32 PAP[5]-AQP,27 4-LA,35,41 Py-foldamer,34 P31,
33 OH-Channel,36 I-quartet,20

PAP[5],26 and m-PE.29 Except for nonselective nCNTP, those in the light blue shaded region demonstrate salt-rejecting ability, whereas those in
the gray region are ion-conductive. (c) Representative snapshot of water-containing channel 1, having 25 AB units and height of 2.8 nm, embedded
in POPC membrane and solvated in 1 M aqueous solution of NaCl. (d) MD-derived water transport rates for 1 and AQP1. The channels were
positionally restrained for the first 48 ns (highlighted region) of each MD trajectory. (e) Number of water molecules inside the channel, with a
mean of 40.5 water molecules. (f) Fraction of proton wire breakers inside the channel, with a mean of 40.7% (16.5 water molecules per channel).
(g) Water cluster consisting of 40 water molecules out of which 17 serve as proton wire breakers, preventing proton transport via the Grotthuss
mechanism.
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12 000:1 mLCR, confirming the inability of 1 to transport
either cation across the membrane and its near-perfect salt
rejection property.20

The rejection of Na+ and K+ cations was further validated by
the fluorescence-based HPTS assay, with pH-sensitive HPTS
dye molecules entrapped in the LUVs (Figure 2b). The
intravesicular region is set pH 7, whereas the extravesicular
environment is maintained at the same pH but with 200 mM
M2SO4 (M = Na or K). Under this high salt gradient, H+/M+

antiport will increase the intravesicular pH and hence enhance
the HPTS fluorescence intensity. As shown in Figure 2b, 1 at 1
μM was found nonresponsive toward Na+ or K+ gradient,
affirming the impermeability of neither cation through 1.
However, gA at 1 μM efficiently transports Na+ (291%) and K+

(343%) cations. Such observation is in excellent agreement
with the reflection coefficient results described earlier, both
confirming the inability of 1 to transport cations.
The anion transport ability of 1 was examined by using Cl-̅

sensitive SPQ dye molecules entrapped in LUVs (Figure 2d).
As expected, 1 at 1 μM displayed similar SPQ quenching as
background (9%), whereas the chloride transporter L848 at 6
μM (corresponding to 1 μM channel concentration) displayed
a significant decrease (45%) in the SPQ fluorescence intensity.
In another set of LUV-based experiments where the intra-
vesicular region has 100 mM NaCl at pH 7 and extravesicular
region has 67 mM Na2SO4 at pH 8 (Figure S5), gA (cation
channel, 1 μM), FCCP (proton carrier, 1 μM), and L8 (anion
channel, 1.3 μM) induce HPTS fluorescence increases of 56%,
22%, and 138%, respectively. In sharp contrast, 1 at 1 μM does
not cause any fluorescence change.
Proton translocation was probed using the pH gradient set

across the membrane (Figure 2c). If 1 is able to transport
protons, the proton efflux will induce significant pH increase in
the intravesicular region and dramatic change in HPTS
fluorescence intensity. Experimentally, no fluorescence change
was observed after the addition of 1 (1 μM), suggesting
negligible transport of protons. Using a conservative approach
(see the Supporting section “Estimation of Proton Transport
Rate”), the proton transport rate of 1 is estimated to be less
than 0.25 proton/s.
The same set of data seen in Figure 2c also can be used to

establish the inability of 1 to transport cations. This is because
if 1 can transport cations, the charge neutralization will require
passive influx of protons, leading to enhanced HPTS
fluorescence intensity. Indeed, we did not observe any
fluorescence change upon addition of 1 (1 μM), suggesting
negligible transport of cations including Na+ and K+.
Stopped-flow fluorescence analysis was further applied to

quantitatively measure chloride permeability through DOPC
membrane in the absence and presence of 1 (Figure S6).35,49

On the basis of the determined single-channel Cl− permeability
PCl of (1.7 ± 07) × 10−20 cm3/s, the water-to-Cl−

permselectivity (e.g., PW/PCl) for 1 was calculated to be (2.5
± 1.2) × 107. Since NaCl permeability is limited by the Na+

ions in actual desalination processes,49 2.5 × 107 represents a
conservative estimate of the water-to-NaCl permselectivity,
exceeding the permeability-selective trade-off trendline of
current desalination membranes11,50 by a factor of ∼102
(Figure 3a). This signifies good potential for developing
novel AWC-based desalination membrane that incorporates or
is made of 1.
Comparison with Two High-Performance AWCs. As

summarized in Figure 3b, currently there are only two water-

transporting systems with higher water conduction rates than
both AQP1 (1.1 × 1010 H2O/s)

9 and AWC 1 (1.4 × 1010

H2O/s), that is, the relatively low selectivity CNT porin (2.3 ×
1010 H2O/s)

31 and the highly selective AWC 4-LA (2.7 × 1010

H2O/s).
35 While the water-transporting CNT porin also

conducts ions and protons,31 channel 4-LA requires additional
lipid anchors (LA) installed at the helical ends to orient the
channel’s alignment to achieve the ultrafast water conduc-
tion.35 Without such LA modifications, its water transport rate
drastically drops by 75% to ∼0.6 × 1010 H2O/s,

35 a value that
is ∼43% of the capacity of 1. Further, it is possible that the LA-
enhanced water transport property might deteriorate over time
or be altered by the complex environment of a water
purification membrane. All these make both CNTP and 4-
LA potentially less competitive for fabricating practical AWC-
based biomimetic water purification membranes than 1.12,51

Also in this regard, 1 perhaps represents the best artificial water
channel ever reported in terms of simplicity of design,
structural robustness, facile synthesis, and water transport
properties.

Critical Roles Played by Fluorine Atoms. To demon-
strate the crucial role of C(sp2)-F moieties in determining the
water transport property, we compared 1 with the recently
reported analogous channel denoted as 1-OMe of 3.0 nm in
height, which differs from 1 in that 1-OMe contains methoxy
groups in the positions of the F atoms of 1.35 As a result of
bulky hydrophobic methyl groups helically arranged around
the pore interior of 1-OMe, its helical backbone is slightly less
curved than that of 1 having its pore surface decorated by F
atoms. Consequently, the pore diameter of 1-OMe is enlarged
to 6.5 Å across (vs 5.2 Å across for 1). Under the identical
conditions, the water transport rate of 1-OMe was determined
at ∼5 × 109 H2O/s,

35 which is 36% of that of 1. Furthermore,
unlike 1 with excellent ion-rejection capability, 1-OMe was
permeable to anions.41 Therefore, we speculate that the
superior water transport properties of 1 should arise from a
collection of influencing factors induced by the inward-facing
C(sp2)-F moieties including the smaller atomic size, weak H-
bond acceptor ability, dipolar bond characteristics, and good
hydrophobicity.

Molecular Dynamics Simulation. To provide a molec-
ular-level explanation of transmembrane water transport
through 1 embedded in POPC lipid bilayer membrane, we
performed 800 ns long all-atom molecular dynamics (MD)
simulations (Figure 3c and Supporting Video 1). To maintain
a QM-derived diameter of 1, we used the RMSD colvar module
of NAMD during the course of MD simulation. As the
simulation begins, water molecules rapidly start permeating
across the lipid bilayer through 1 (Figure 3d). Starting from
the initial upright conformation, the channel explores an
ensemble of tilted conformations (possible experimental
structures) in the membrane during the course of the MD
simulation. A linear fit to the water permeation versus
simulation time (excluding first 200 ns) yields a permeation
rate of ∼3 water molecules/ns for 1, which is higher than 1.2
water molecules/ns for AQP1. At any given instant of time, a
water cluster residing inside the channel typically has 30−50
water molecules, with a mean of 40.5 water molecules (Figure
3e). Among them, 40.7% or 16.5 water molecules are
considered as proton wire breakers (Figure 3f), which were
described and defined in our recent study.35 Interacting with
the neighboring water molecules via zero or just one H-bond,
or two H-bonds solely via only O atoms or only H atoms
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(Figure 3g), these breakers prevent formation of a continu-
ously H-bonded channel-spanning water chain through which
protons hop via the Grotthuss mechanism. Interestingly, the
breaker type involving the formation of two H-bonds with the
adjacent water molecules using only H atoms is also observed
in the NPA motif of AQPs.52 The existence of these proton
wire breakers accounts for low proton permeability of 1.
Because of the narrow pore, each water molecule forms 1.94

H-bonds with other water molecules inside the channel
(Figure S9a,b) and 0.79 H-bonds with the channel wall
(Figure S9c), leading to a total of 2.73 H-bonds per water
molecule. Taking 4 H-bonds per water molecule (EH‑bond = 5.1
kcal/mol) in bulk water,53,54 the activation energy for water
entry into 1 can be estimated to be 6.5 kcal/mol, which is
consistent with the experimentally determined value of 7.1
kcal/mol (Figure 1f). The fact that 1 has a higher activation
energy but transports water faster than AQP1 may be
attributed to its larger pore diameter of 5.2 Å versus ∼2.8 Å
opening in the central channel of AQP1 as well as more than
one water wire molecule occupying the pore lumen that differs
from the single file transport seen in AQP1.35

In summary, we have demonstrated ultrahigh water
transport efficiency and excellent selectivity of a novel class
of fluorofoldamer-based artificial water channels. Produced by
facile one-pot copolymerization reaction with good yields, the
best-performing water channel 1 of 2.8 nm in average channel
length shows a remarkable water conduction rate of 1.4 × 1010

H2O/s and near-perfect rejection of salt ions (Na+, K+, Cl−)
and protons. This work uncovers the positive effects of
introducing C(sp2)-F moieties on the inner rim of foldamer-
based water channel pores, providing a new dimension of
channel design principles. This, we believe, will stimulate
further development toward the next generation of membrane
technologies for water desalination, nanofiltration, and medical
dialysis applications.
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