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ABSTRACT

Water-binding foldamers have been rarely studied. By orienting both H-bond donors and acceptors toward their interior, two pyridine-derived
crescent-shaped folding oligoamides were found to be capable of trapping both conventional and unconventional water dimer clusters in their
cavity (~2.5 A radius). In the unconventional water dimer cluster, the two water molecules stay in contact via an unusual H—H interaction (2.25 A)

rather than the typical H-bond.

Supramolecules have been known to be able to host
water molecules in their cavities, channels, or layers in the
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solid state. Depending on the sizes of the cavity and the
functionalities present in the host molecules, water mole-
cules can interact through H-bonding to form various
kinds of water clusters containing 2—45 water molecules.'
Stabilizing the water clusters in the crystal lattice offers an
attractive avenue whereby various topographies or archi-
tectures of the water clusters and the system’s H-bonding
networks can be more easily studied, allowing us to better
understand the unusual physical and chemical properties
of bulk water and its interactions with surfaces. In parti-
cular, numerous theoretical and experimental investiga-
tions of smaller water clusters, ranging from a dimer to
hexamer cluster,"™ " had provided good insights into the
structure, cooperativity, and rearrangement dynamics of
the H-bonding network in bulk water, which still remains
quite poorly understood at the present time. As the
simplest form of water clusters, a water dimer, (H>O),,
is of paramount importance and had been extensively
studied'*"* due to its significant roles in several existing
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environmental issues, including the formation of acid
rain,®> vapor—liquid nucleation,* absorption of solar
radiation in the atmosphere,” and greenhouse effect.®
On the other hand, the hitherto reported supramolecular
water hosts have largely relied on conformationally more
flexible organic or organometallic molecules with respect to
foldamers’ whose well-defined backbones are primarily
stabilized by noncovalent forces such as solvophobic forces,
m—m stacking interactions, and H-bonds. Despite their
great diversities,” only a few foldamer molecules of similar
type have been reported recently by Lehn and Huc, accom-
modating up to three water molecules in their cavities.® This
communication presents a foldamer approach toward en-
capsulating both conventional and unconventional water
dimers and discusses their topologies and energetic pro-
files constrained within the cavities of two water-binding
pyridine-based foldamers, i.e., trimer 3 and pentamer 5.
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Pyridine-based H-bond enforced folding backbones of
oligoamides 1, 2, 4, and 5 have been recently confirmed to
have a crescent structure in both solution and solid states.’
Longer oligomers such as tetramer 4 and pentamer 5 take
up a helical conformation that requires ~4.3 repeating
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units per helical turn. The inward-pointing amide protons
(H-bond donors) and pyridine nitrogens (H-bond
acceptors) in 1—5 enclose a cavity of ~2.5 and 3.1 A in
radius, respectively, and seem to be large enough to
accommodate water molecules. Ab initio calculations per-
formed on trimer 1, tetramer 4, and pentamer 5 at the
B3LYP/6-311G* level show that the water complexes of
neH,O (n = 1,4, and 5) have a respective stability of 9.11,
11.39, and 7.80 kcal/mol more than its individual compo-
nents with 4eH,O being energetically most favored (see the
Supporting Information). Undoubtedly, the crystal pack-
ing effect may override this energetic favorability order.

Experimentally, obtaining water complexes was not
that straightforward. After screening numerous condi-
tions involving various combinations of all the common
organic solvents by methods of either slow evaporation
or diffusion, 1 cannot be crystallized out under all
the conditions tested, crystals of 2 and 3 can only be
obtained respectively from acetone and dichloromethane
by slow evaporation, and slow diffusion of cyclohexane
into dichloromethane over a few weeks led to X-ray
quality crystals for 4 and 5.

Examination of these crystal structures reveals the ab-
sence of water molecules in both 2 and 4. Since 2 was
crystallized from water-sequestering acetone molecules,
seclusion of trace amounts of acetone-solvated water
may occur that prevents 2 from binding to water mole-
cules. In 4, rather than water molecules, dichloromethane
molecules were either trapped in the crystal lattice or
bound by 4 in its cavity.

Nevertheless, the water-binding abilities of this series of
pyridine-derived cavity-enclosing oligoamides can be pro-
ven by the water-containing crystal structures of 3 and 5.
Of further note is that both were crystallized from water-
immiscible solvents such as dichloromethane and cyclo-
hexane, and only trace amounts of water molecules can be
found under these crystallization conditions.

The crystal structure®® of 3 expectedly shows a crescent-
shaped structure as those found in 1, 2, 4, and 5 recently
reported by us,’® a result of an efficient backbone rigidi-
fication by the stabilizing forces from the continuous
intramolecular H-bonding network made up of five
H-bonds (Figure 1). Molecules of 3 stack in a linear,
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Figure 1. (a) Cylindrical packing by 3; blue solid arrows indicate
the weak H-bond formed between the pyridine N and the
respective closer proton from the water dimer. (b) Intermolec-
ular H-bonds of varying lengths found among the trapped
water molecule, amide protons, pyridine N-atoms, and ester
O-atomsin 3; atoms participating in H-bonds are represented by
small balls of varying colors. (c¢) Unconventional water dimer
cluster from (a) that is mediated by the van der Walls interaction
involving two H-atoms (dy_y = 2.253 A). H-bonds in (b) are
shown as dotted red lines.

cylindrical fashion with an ~180° offset from each other,
due to the benzene ring of the carboxybenzyl (Cbz)
protecting group lying in a perpendicular position to the
plane of the aromatic backbone (Figure 1a). The five
intramolecular H-bonds formed between amide protons
and neighboring pyridine nitrogens have H-bonding dis-
tances 2.144— 2.347 A in length. The resultant H-bond
enforced small cavity in 3 has a radius of ~2.51 A,
measured from the center of the cavity to the amide proton,
and is found to enclose a water molecule in each asym-
metric unit despite using a nonpolar solvent, dichloro-
methane, with low water content as the crystallizing
medium. The water molecule sits almost in the center of
the cavity (Figure 1b) with its O-atom forming a medium
strength H-bond (do_y = 2.467 A) with the amide proton
of the Cbz group and two weak H-bonds with the other
two amide protons (do_y = 2.909 and 2.901 A). One of the
waters additionally forms two medium strength H-bonds
with the pyridine N (dj_o = 2.434 A) and the ester O
(du_o = 2462 A). The other water proton forms a
medium strength H-bond with the pyridine N (dg_o =
2.665 A, Figure 1a) that stays below or above the proton.

Interestingly, the arrangement of the two water mole-
cules in the cluster observed in 3 is quite unusual: there is
no intermolecular H-bond found in the water dimer
(Figure 1c), making it not belong to any of the 16 unique
water dimer clusters suggested by Dyke with invariably
each containing one intermolecular H-bond.'! Instead,
the water molecules in the cluster are in close contact with
each other through H—H interaction with a H- - -H dis-
tance of 2.253 A that is ~0.15 A less than twice the van der
Waals radius of the H-atom (VAW = 1.20 A). The distance
between the two water oxygens is 3.504 A. As the water
dimer clusters elongate, a zigzag-like discrete infinite water
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Figure 2. (a) Intermolecular zigzag packing by 5. (b) Intermo-
lecular H-bonds of varying lengths found among a trapped
water molecule, amide protons, pyridine N-atoms, and ester
O-atoms in 3; atoms participating in H-bonds of within 3.0 A are
represented by small balls of vaying colors, and strong H-bonds
are labeled with the H-bond lengths. (c) Conventional water
dimer cluster from (a) or (b) that is mediated by one strong
H-bond of 1.849 A with a very short interatomic distance of
2.71 A between the two water oxygens. In both (a) and
(b), carbonyl O-atoms from the two ends form two strong
intermolecular H-bonds with the water dimer cluster and are
indicated by single-headed solid lines. H-bonds in (b) are shown
as dotted red lines.

chain is observed, with a distance of 6.92 A between the
two adjacent water dimers, which is approximately twice
that of the typical intermolecular 7—z stacking distance
(Figure la). This unconventional water dimer cluster is
formed possibly as a result of strong intermolecular
H-bonds between the water molecule and the protons
and nitrogens of 3 (Figure 3b) that “freeze” the water
molecule in the cavity of 3, followed by the aromatic 7—
stacking forces that pack the water-containing 3 in a way
that brings pairs of water molecules in close proximity, yet
without allowing them to reorient as they would since their
rotations are greatly restricted by intermolecular H-bonds.

Similar to 3, water molecules are also found in the cavity
of 5. But differing from 3 that encloses one water molecule
per molecule of 3, every molecule of 5 is able to accom-
modate two waters in its cavity. Apparently, this difference
can be attributed to the differential structures between
them: while 3 adopts a planar structure and so contains a
roughly 2D planar cavity, 5 being helically folded encloses
a cavity that is 3D-shaped.

In 5, there are nine intramolecular H-bonds (2.133—
2.394 A) that lead to a helical conformation to enclose a
small cavity with a radius of ~2.57 A, measured from the
center of the cavity to the amide proton. Its 3D packing is
stabilized by two strong H-bonds among the water dimer
and the carbonyl oxygens from the end amide and Cbz
groups (dy_o = 1.946and 1.916 A, respectively, Figure 2a
and 2b). In this case, the water dimer cluster also serves as
an exo-bidentate ligand, bridging molecules of 5 and
forming a zigzag-like chain with an intermolecular distance

Org. Lett,, Vol. 13, No. 12, 2011
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Figure 3. Binding energies derived by comparing the calcluated
single-point energies of structural motifs directly taken out from
the H-bonding networks found in 3 and 5 at the B3LYP/
6-311G+(2d,p) level. (a) H-bonds formed between a water mole-
cule and 3 are worth ~7.61 kcal/mol. (b) H-bonds formed
between the water dimer cluster and 5 are worth ~10.73 kcal/
mol. (c) An axial H-bond of 1.946 A formed between a water
molecule and neighboring 5 from Figure 2a is worth ~3.98 kcal/
mol. (d) An axial H-bond of 1.916 A formed between a
water molecule and neighboring 5 from Figure 2a is worth
~2.41 kcal/mol.

of 6.821 A between two crystallographically equivalent
water oxygens (Figure 2a).

The water dimer cluster in 5 is stabilized by forming
two strong H-bonds with the pyridine N (dy_n = 1.894 A)
and Cbz amide proton (do_y = 1.937 A), one medium
strength of H-bond (do_y = 2.371 A) with amide proton,
and other weak H-bonds of less than 3.0 A with other
amide protons (Figure 2b). Out of five pyridine N-atoms,
only the one from the first pyridine ring at one end parti-
cipates in forming a strong H-bond with the water dimer
(dy_n~ = 1.894 A, Figure 2b). As illustrated in Figure 2c,
seemingly like a conventional water dimer containing a
strong H-bond (du_o = 1.849 A), the O—O distance was
however found to be very short at 2.708 A for the water
dimer cluster found in 5. This distance is even shorter than
that observed in regularice (dy_o = 2.74 A), anindication
of the strong and positive cooperativity in the H-bonding
network shown in Figure 2b.

The binding energies dictating the formation of uncon-
ventional and conventional water dimer clusters in 3 and 5
were computed to be 2.22 and 3.88 kcal/mol, respectively,
at the level of M06-2X/aug-cc-pvtz.' Compared to the
binding energy (BE) of 5.21 kcal/mol for the most stable
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H-bonded water dimer (Figure S2¢), the water dimers
found in 3 and 5 are destabilized by 2.99 and 1.33 kcal/
mol, respectively, due to the structural restrictions imposed
by the surrounding molecular scaffolds.

The energetic profiles of the H-bonding networks in 3
and 5 were provided by carrying out single point-energy
calculations at the B3LYP/6-311G+(2d,p) level on the
corresponding structural motifs taken from their crystal
structures. As shown in Figure 3a and 3b, monomeric 3
(Figure 1b) and 5 (Figure 2b) contribute a respective total
stabilizing energy of 7.61 and 10.73 kcal/mol to the water
molecule and water dimer in their cavities by forming
H-bonds of varying strengths. For the two axially orienting
H-bonds of 1.946 and 1.916 A in length found in 5
(Figure 2a), their H-bond strengths were computed to be
3.98 kcal/mol (Figures 3c and S2b) and 2.41 kcal/mol
(Figures 3d and S2a), respectively. Although we are not
certain why the shorter H-bond (1.916 A) is weaker than
the longer H-bond (1.946 A) by 1.57 kcal/mol, this dis-
crepancy may be due to the nonlinear relationship among
atoms O;, H, and O, and a shorter distance of 2.757 A
between the two repulsive O; and O, atoms for the former
H-bond (Figure S2a) with respect to those found in the
latter (Figure S2b). Apparently, the formation of these
stabilizing H-bonding networks can more than compen-
sate for the energetic penalties of 2.99 and 1.33 kcal/mol
experienced by the water dimer clusters constrained in 3
and 5, respectively, adopting stable yet less favored con-
formations with regard to the most stable water dimer
conformation.

In summary, we report here for the first time a crystal-
lographic observation of an unconventional water dimer
mediated by a rather unusual H- - -H interaction. Com-
pared to the computationally derived BE of 5.21 kcal/mol
for the most stable water dimer cluster, those water dimer
clusters in 3 and 5 are destabilized by 2.99 and 1.33 kcal/
mol, respectively. The ability to trap both conventional
and unconventional water dimer clusters of varying stabi-
lities and topographies by 3 and 5 highlights the potential
use of other analogous pyridine-derived foldamers as the
water-binding molecules, allowing for the creation of
enlarged 3D-shaped cavities for encapsulating larger water
clusters of diverse topographies in their interiors.
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